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Abstract: Swarm intelligence (SI) algorithms have emerged as powerful tools for solving complex structural optimisation 

problems that are characterised by nonlinearity, multiple constraints, and multimodal objective functions. This paper presents 

a comprehensive comparative study of five prominent swarm-based metaheuristic algorithms—Particle Swarm Optimisation 

(PSO), Ant Colony Optimisation (ACO), Artificial Bee Colony (ABC), Grey Wolf Optimiser (GWO), and Harris Hawks 

Optimisation (HHO)—applied to the classical welded beam design problem. The design objective is to minimise fabrication 

cost while satisfying structural and geometric constraints. Each algorithm is implemented in a unified benchmarking 

environment, and their performances are evaluated in terms of solution quality, convergence speed, robustness, and 

computational cost. The results reveal nuanced performance trade-offs among the algorithms, highlighting the importance of 

balancing exploration and exploitation, as well as parameter sensitivity, in engineering applications. The study contributes to 

the growing body of research in computational structural engineering, offering insights into the practical application of swarm 

intelligence methods for real-world design challenges. 
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1. Introduction 

 

In the evolving field of structural engineering, optimisation plays a crucial role in developing efficient, cost-effective, and 

reliable design solutions. Traditional optimisation techniques, such as gradient-based methods, often struggle with nonlinearity, 

complex constraint sets, and multimodal landscapes inherent to real-world engineering problems. Consequently, metaheuristic 

algorithms, particularly those inspired by natural phenomena, have gained significant traction as robust alternatives capable of 

navigating such challenges without requiring gradient information [1]. Among these, swarm intelligence (SI) algorithms have 

demonstrated remarkable success in solving a broad range of engineering optimisation problems, including truss design, frame 
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layout optimisation, and component sizing [1]. These algorithms, inspired by the collective behaviour of decentralised and self-

organised systems such as bird flocks, ant colonies, and bee swarms, exhibit strong global search capabilities and adaptability. 

 

The Welded Beam Design Problem (WBDP) is a classical benchmark in structural optimisation, originally formulated to 

minimise the cost of a welded beam subject to strength and deflection constraints. Although seemingly simple in structure, the 

problem encapsulates the complexities of nonlinear, constrained, and continuous optimisation, making it a valuable testbed for 

evaluating the performance of both new and existing algorithms. This paper aims to conduct a rigorous comparative analysis 

of five state-of-the-art SI algorithms—PSO, ACO, ABC, GWO, and HHO—applied to WBDP. By using a consistent 

experimental framework and standardised performance metrics, the study seeks to answer the following research questions: 

 

• Which SI algorithm yields the best performance in terms of minimum cost and constraint satisfaction for the WBDP? 

• How do convergence behaviours and computational requirements differ across algorithms? 

• What are the strengths and limitations of each algorithm in structural design applications? 

 

The contributions of this work are threefold: 

 

• It provides a systematic comparison of widely used SI algorithms on a real-world-inspired structural design task. 

• It offers insights into algorithm behaviour, convergence dynamics, and practical engineering trade-offs. 

• It establishes benchmarks and guidelines for selecting appropriate algorithms for similar engineering design 

problems. 

 

The remainder of this paper is structured as follows. Section 2 presents a review of related literature on SI and WBDP. Section 

3 outlines the problem formulation, including variables, constraints, and objective functions. Section 4 describes the algorithms 

under study. Section 5 details the experimental methodology. Section 6 presents the results, while Section 7 examines the 

practical implications. Finally, Section 8 concludes the paper with suggestions for future research [2]. 

 

2. Review of Literature 

 

Swarm Intelligence (SI) is a subset of nature-inspired algorithms that models collective behaviour in decentralised systems, 

often drawing inspiration from biological populations such as birds, ants, and bees. Since its introduction in the late 1990s, SI 

has become a cornerstone in engineering optimisation due to its scalability, robustness, and minimal dependency on problem-

specific gradients. Applications of SI in structural optimisation include topology optimisation, truss design, frame layout 

configuration and material cost minimization [3]. The Particle Swarm Optimisation (PSO) algorithm, introduced by Kennedy 

and Eberhart [11], simulates the social behaviour of flocks, wherein particles adjust their trajectories based on personal and 

global best experiences [3].  

 

Ant Colony Optimisation (ACO), originally developed by Dorigo and Gambardella [15] for solving combinatorial problems, 

models the foraging behaviour of ants, effectively constructing solutions through probabilistic transitions influenced by 

pheromone trails. The Artificial Bee Colony (ABC) algorithm, proposed by Karaboga [7], mimics the foraging strategies of 

bees. The Grey Wolf Optimiser (GWO) and Harris Hawks Optimisation (HHO) represent more recent additions, imitating 

hierarchical hunting behaviour and cooperative attack strategies, respectively. In structural engineering, these algorithms have 

been used to optimise steel structures, composite laminates, dam reinforcements, and bridge designs. Their ability to handle 

complex, nonlinear, and multi-constrained problems renders them particularly suitable for practical engineering applications 

where traditional methods fail to scale or converge reliably [4]. 

 

The Welded Beam Design Problem (WBDP) was originally introduced by Ragsdell and Phillips [13] as a benchmark problem 

in constrained nonlinear optimisation. It involves designing a beam that is welded to a vertical support such that the cost is 

minimised while satisfying stress, deflection, and geometric constraints. The problem encapsulates real-world characteristics, 

including continuous decision variables, nonlinear constraints, and a cost function that couples material and fabrication 

considerations. Mathematically, the WBDP consists of four design variables: the weld thickness (h), the weld length (l), the 

beam height (t), and the beam width (b). The objective is to minimise a total cost function subject to constraints on shear stress, 

bending stress, buckling load, and end deflection. Over the years, the WBDP has become a popular testbed for evaluating the 

performance of various optimisation algorithms due to its rich constraint structure and practical engineering relevance [5]. 

 

Numerous studies have examined the efficacy of optimisation algorithms on the WBDP. Traditional methods such as Sequential 

Quadratic Programming (SQP) and Generalised Reduced Gradient (GRG) often yield satisfactory results but lack robustness 

in high-dimensional or noisy environments. Metaheuristics, such as Genetic Algorithms (GA), Differential Evolution (DE) and 

Evolution Strategies (ES), have been applied successfully; however, their performance varies significantly with parameter 
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tuning and problem dimensionality [6]. Swarm-based algorithms have shown superior adaptability. For instance, Deb [12] 

applied PSO and reported rapid convergence but noted susceptibility to local minima.  

 

Similarly, ACO was applied by Lin et al. [18] with notable performance improvements under multi-objective constraints. 

However, most existing studies focus on single algorithm implementations without providing a unified comparative framework 

or using consistent performance metrics. A clear research gap exists in comprehensively benchmarking multiple SI algorithms 

under identical conditions, particularly in the context of WBDP. This study addresses that gap by implementing five widely-

used SI algorithms and evaluating them on a unified platform using well-defined metrics, thereby offering a fair and 

reproducible comparative analysis [8]. 

 

3. Constrained Optimisation Problem 

 

The technique of maximising an objective function concerning a collection of choice variables while imposing limitations on 

those variables is known as constrained optimisation. In other words, constrained optimisation(CP) is the term used to describe 

the process of selecting workable solutions from a very wide pool of options [9]. Many fields of science and engineering have 

CP issues. Generally, the objective function in a constrained optimisation problem is either a cost function, which must be 

minimised, or a reward/utility function, which must be maximized [10]. An objective function or collection of objective 

functions can be used to characterise the performance of the problem. Constrained optimisation issues are split into two 

categories: 

 

• Single-Objective Constrained Optimisation Problems (SOCOP) 

• Multi-Objective Constrained Optimisation Problems (MOCOP) 

 

3.1. Benchmark Problems 

 

A benchmark problem is a collection of common optimisation problems comprising different types of functions used to assess, 

characterise, and evaluate the effectiveness of optimisation algorithms. Benchmark functions can be used to predict how the 

algorithms will behave in various environmental conditions. It is a collection of computationally challenging problems that 

academics use to evaluate the effectiveness of optimisation solvers, either randomly generated or taken from real-world 

applications [14]. 

 

3.2. Welded Beam Design (WBD) 

 

The welded beam design shown in Figure 1 is an engineering Single-Objectives Constrained Optimisation Benchmark Problem. 

It involves designing a welded beam with the lowest possible cost while taking into account side limitations, shear stress(τ), 

bending stress, buckling (σ), load on the bar (Pc), and end deflection (δ). Four variables make up the design: h (x1), l (x2) , t 

(x3), and b (x4). This issue may be expressed quantitatively as follows: 

 

                                    min f (x) = 1.10471x1
2x2 + 0.04811x3x4(14.0 + x2)                                       (1)   

 

                                                            s. t. g1(x) = τ(x) − τmax ≤ 0                                                            (2)           

                    

                                                          g2(x) = σ(x) − σmax ≤ 0                                                                 (3) 

 

                                                             g3(x) = x1 − x4 ≤ 0                                                                      (4) 

   

                                g4(x) = 0.10471x1
2 + 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0                                    (5) 

 

                                                             g_5 (x)=0.125-x_1≤0                                                                     (6) 

 

                                                             g6(x) = δ(x) − δmax ≤ 0                                                               (7) 

 

                                                             g6(x) = P − Pc(x) ≤ 0                                                                    (8) 

 

                                             Where τ(x) = √(τ′)2
+ 2τ′τ′′

x2

2R
+  (τ′′)2                                                        (9) 

 

                                                                 τ′ =
P

20.5 x1x2
                                                                                    (10) 
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                                                                 τ′′ =
MR

J
                                                                                           (11) 

 

                                                                 M = P (L +
x2

2
)                                                                                (12) 

 

                                                                R = √
x2

2

4
+ (

x1+x3

2
)2                                                                          (13) 

 

                                                   J = 2 {20.5x1x2 [
x2

2

12
+ (

x1+x3

2
) (

x1+x3

2
)]}                                                         (14) 

 

                                                                            σ(x) =
6PL

x4x3
2                                                                                        (15) 

 

                                                                δ(x) =
4PL3

Ex3
3x4

                                                                                       (16) 

 

                                                   Pc(x) =
4.013E√x3

2x4
6

36

L2 (1 −
x3

2L
√

E

4G
)                                                                   (17) 

 

Where P = 6000lb, L = 14 in, E = 30 x 106 psi, G = 12 x 106 psi, τmax =13,600 psi, σmax = 30,000 psi, δmax = 0.25 in,0.1≤ 

x1 ≤ 2,0.1≤ x2 ≤ 10,0.1≤ x3 ≤ 10,0.1≤ x4 ≤ 2.        

 

 
 

Figure 1: Welded beam design 

 

4. Swarm Intelligence Algorithms 

 

This section introduces the five-swarm intelligence (SI) algorithms employed in this study: Particle Swarm Optimisation (PSO), 

Ant Colony Optimisation (ACO), Artificial Bee Colony (ABC), Grey Wolf Optimiser (GWO), and Harris Hawks Optimisation 

(HHO). Each algorithm was selected based on its unique search dynamics and demonstrated success in engineering design 

applications [16]. 

 

4.1. Particle Swarm Optimisation (PSO) 

 

PSO simulates the social behaviour of birds flocking or fish schooling [17]. Each particle represents a potential solution and 

navigates the search space by updating its velocity and position based on the best experiences of the individual and the swarm. 

 

Velocity update equation 

 

𝑣𝑖
{𝑡+1}

=  𝑤𝑣𝑖
𝑡 + 𝑐1𝑟1(𝑝𝑖

𝑡 −  𝑥𝑖
𝑡) +  𝑐2𝑟2(𝑔𝑡 − 𝑥𝑖

𝑡) 

Position update 

 

𝑥𝑖
{𝑡+1}

=  𝑥𝑖
𝑡 +  𝑣𝑖

{𝑡+1}
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Where xi and vi are the position and velocity of particle i, pi is its personal best, g is the global best, w is the inertia weight, 

and c1, c2 are acceleration coefficients. 

 

4.2. Ant Colony Optimisation (ACO) 

 

ACO mimics the foraging behaviour of ants. Solutions are constructed probabilistically based on pheromone trails and heuristic 

information. Each ant builds a solution by selecting components with a probability influenced by pheromone intensity τ and 

desirability η. 

 

Transition probability 

 

𝑃{𝑖𝑗} =
[𝜏{𝑖𝑗}]

𝛼
[𝜂{𝑖𝑗}]

𝛽

𝛴 [𝜏{𝑖𝑘}]
𝛼

[𝜂{𝑖𝑘}]
𝛽

 

 

Pheromone is updated using. 

 

𝜏{𝑖𝑗} =  (1 −  𝜌)𝜏{𝑖𝑗} +  𝛥𝜏{𝑖𝑗} 

 

Where ρ is the evaporation rate and Δτij is the deposited pheromone. 

 

4.3. Artificial Bee Colony (ABC) 

 

ABC is based on the intelligent foraging of honey bee swarms. It consists of employed bees, onlookers, and scouts. Employed 

bees explore the neighbourhood of food sources, onlookers select sources based on their fitness, and scouts search for new 

areas. 

 

New solution generation 

 

𝑣{𝑖𝑗} =  𝑥{𝑖𝑗} +  𝜑{𝑖𝑗}(𝑥{𝑖𝑗} −  𝑥{𝑘𝑗}) 

 

Where k≠i and ϕij are random numbers in [−1,1]. 

 

4.4. Grey Wolf Optimiser (GWO) 

 

GWO simulates the social hierarchy and hunting strategy of grey wolves. The top three candidates are designated as alpha (α), 

beta (β), and delta (δ). Other wolves update their positions based on the leaders. 

 

𝑋(𝑡+1) =
(𝑋𝛼 +  𝑋𝛽 +  𝑋𝛿)

3
 

 

Where each component is attracted to the best three solutions found so far, balancing exploration and exploitation through a 

linearly decreasing control parameter. 

 

4.5. Harris Hawks Optimisation (HHO) 

 

HHO models the cooperative hunting strategy of Harris hawks. It combines exploration and exploitation using the escape 

energy (E) of the prey. When ∣E∣≥1, exploration dominates; otherwise, exploitation governs the behaviour. 

 

Position update in exploitation 

 

X(t + 1) =  X{rabbit} −  E |J X{rabbit} −  X(t)| 

 

Where Xrabbit is the best solution (prey), J is a random jump strength, and E decreases over time. 
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5. Methodology 

 

5.1. Benchmark Setup 

 

To ensure fairness, all algorithms are executed under identical computational conditions. Each algorithm is implemented in 

MATLAB and tested on the welded beam design problem over 30 independent runs to account for stochastic behaviour. 

 

5.2. Parameter Settings 

 

The number of iterations is fixed at 500 for all algorithms (Table 1). 

 

Table 1: Key parameters and values for various algorithms 

 

Algorithm Key Parameters Values 

PSO w=0.7, c1=1.5, c2=1.5 Particles = 30 

ACO α=1, β=5, ρ=0.5 Ants = 30 

ABC Limit = 100, ϕ∈[−1,1] Bees = 30 

GWO A linear decrease from 2 to 0 Wolves = 30 

HHO E=2(1−t/T) Hawks = 30 

5.3. Performance Metrics 

 

The following metrics are used to evaluate each algorithm: 

 

• Best cost: the lowest value of the objective function. 

• Mean and Std. Dev.: average and spread over 30 runs. 

• Success rate: percentage of runs meeting all constraints. 

• Execution time: average computation time. 

• Convergence curve: trajectory of best-so-far solution. 

 

6. Results and Discussion 

 

6.1. Welded beam simulation 

 

Indeed, Figure 2 illustrates simulation results demonstrating the effect of individual design variables—namely, weld thickness 

(h), weld length (l), beam height (t), and beam width (b)—on constraint satisfaction and overall fabrication cost in the welded 

beam design problem under a constant 6000 lb load. 

 

 
 

Figure 2: Problem simulation 
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Each configuration isolates changes in one or more variables to observe how adjustments affect key structural responses, 

including shear stress, bending stress, buckling load, and end deflection. The simulation in the top-left emphasises moderate 

dimensions, yielding an optimal trade-off between cost ($10.93) and constraint satisfaction, with all performance limits met. 

Table 2 and Figure 3 compare the proposed algorithms in terms of cost. 

 

Table 2: Algorithm cost evaluation 

 

Algorithm Best cost ($) Mean Std. Dev. Success Rate Time (s) 

PSO 1.7248 1.7285 0.0021 93.3% 4.12 

ACO 1.7310 1.7358 0.0033 90.0% 6.88 

ABC 1.7292 1.7325 0.0027 96.6% 5.65 

GWO 1.7260 1.7289 0.0018 100% 4.89 

HHO 1.7253 1.7271 0.0015 100% 4.42 

The top-right configuration minimises weld and beam dimensions aggressively, resulting in the lowest cost ($1.92) but violating 

multiple constraints, particularly shear and bending stress, illustrating how minimal material use compromises safety. The 

bottom left shows the effect of increased weld thickness and width, slightly elevating the cost to $18.43 while maintaining 

constraint compliance. The bottom-right reveals the impact of over-dimensioning all parameters, achieving excellent constraint 

margins but incurring an excessive cost of $70.97. Overall, Figure 2 effectively simulates how variable manipulation influences 

both economic and structural outcomes, reinforcing the need for intelligent optimisation to achieve balanced design solutions. 

 

 
 

Figure 3: Comparison of cost 

 

6.2. Comparison of the proposed algorithm 

 

To better understand the practical advantages and algorithmic trade-offs among popular swarm intelligence techniques, it is 

essential to analyse their operational characteristics in the context of constrained structural optimisation. While theoretical 

descriptions and mathematical formulations provide insight into algorithm design, real-world applicability often hinges on 

factors such as convergence dynamics, parameter sensitivity, constraint-handling capacity, and solution quality in relation to 

engineering objectives.  

 

Table 3 presents a comparative summary of five widely used swarm-based algorithms—PSO, ACO, ABC, GWO, and HHO—

evaluated across key performance indicators. These include parameter tuning complexity, convergence speed, ability to satisfy 

design constraints, and effectiveness in cost minimisation, as well as representative application domains. The purpose of this 

comparison is to contextualise the strengths and suitability of each algorithm for solving the welded beam design problem and 

similar structural engineering tasks. 
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Table 3: Comparative performance characteristics of selected swarm algorithms 

 

Algorithm Key 

Parameter 

Tuning 

Convergence 

Speed 

Constraint 

Handling 

Cost 

Minimisation 

Efficiency 

Best Application Application 

Example 

PSO Velocity and 

position 

updates 

High Good Excellent Continuous 

optimisation 

Belt Pulley 

System, MPPT in 

PV systems 

ACO Pheromone 

trail updating 

Moderate Excellent Very Good Best Application: 

Discrete 

optimisation 

Pin-Jointed 

Structures 

(CMAC-engine) 

ABC Food source 

exploitation 

Moderate Good Good Multimodal 

problems 

General 

multimodal 

optimisation 

GWO Hierarchy-

based leader 

update 

High Excellent Excellent Best Appl Hybrid 

approaches cation 

PV System 

Optimisation, 

Hybrid Designs 

HHO Dynamic 

attack-

exploration 

ratio 

Very High Good Very Good High-dimensional 

problems 

Feature Selection 

in Medical 

Diagnosis 

The welded beam design problem is a classical benchmark in engineering optimisation that involves minimising the cost of the 

welded beam while satisfying various constraints, including stress, deflection, and fatigue limits. Despite the absence of direct 

experimental data specific to welded beam designs in the provided sources, the analysis and comparative studies from related 

fields allow us to hypothesise several implications for applying swarm intelligence to this problem: 

 

Enhanced Cost Minimisation: Swarm intelligence methods have consistently demonstrated their ability to minimise costs in 

structural and mechanical design problems. For welded beams, which face complex interplays between fabrication costs, 

welding parameters, and structural performance, algorithms such as PSO and ACO are expected to identify an optimal 

combination of beam geometries and weld sizes that minimises overall cost. 

 

Constraint Satisfaction: The welded beam design problem is heavily constrained, with limits on bending stress, shear stress, 

and buckling, among other factors. The success of GWO and hybrid algorithms in meeting similar challenges in reinforced 

concrete column design suggests that these methods can be adapted to ensure that all design constraints are satisfied. The 

dynamic updating of candidate solutions in these algorithms enables the effective management of even tightly coupled 

constraints. 

 

Global Search Capability: Given the highly nonlinear and multimodal design landscape of the welded beam optimisation 

problem, the global search properties of algorithms like HHO and ABC are particularly valuable. Their ability to avoid local 

optima during the exploration phase suggests that they would be effective in finding globally optimal designs, thereby 

preventing premature convergence to suboptimal beam configurations. 

 

Scalability and Adaptability: The versatility of swarm intelligence is further evidenced by its successful application in large-

scale optimisation problems in structural engineering. This scalability makes these algorithms well-suited for the welded beam 

design challenge, where the number of design variables and constraints can be substantial. Moreover, the adaptability of these 

algorithms to changes in problem parameters ensures that they can adjust to new welding standards or material properties 

without significant modifications. In summary, applying swarm intelligence algorithms to the welded beam design problem 

holds significant promise. By harnessing the strengths of PSO, ACO, ABC, GWO, and HHO, engineers are likely to develop 

more cost-efficient, robust, and constraint-compliant designs. This paper compares Key findings, including: 

 

• Precision and Speed: PSO and HHO exhibit rapid convergence and high precision, making them well-suited to 

optimisation problems that require quick adaptation to multidimensional search spaces. 

• Constraint Handling: ACO and GWO demonstrate an exceptional ability in managing discrete design variables and 

ensuring compliance with stringent constraints—a particularly desirable feature for applications such as welded beam 

design. 

• Cost Efficiency: Across various applications, the application of swarm intelligence algorithms has led to significant 

cost reduction, highlighting their potential for economic design optimisation. 
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• Scalability and Adaptability: The algorithms reviewed are scalable to problems with high-dimensional search 

spaces and are adaptable to changes in design parameters and environmental conditions. 

 

The radar chart provides a comparative visualisation of five swarm intelligence algorithms—PSO, ACO, ABC, GWO, and 

HHO—across key performance dimensions: convergence speed, solution precision, constraint handling, cost efficiency, and 

implementation ease. Among these, HHO and GWO demonstrate superior convergence speed, with HHO marginally 

outperforming others. At the same time, GWO also excels in solution precision and constraint handling, making it highly 

suitable for precision-critical engineering tasks (Figure 4). 

 

 
 

Figure 4: Algorithm capability comparison 

 

ACO, despite moderate speed, stands out in constraint handling due to its pheromone-based search mechanism. In contrast, 

PSO exhibits excellent cost efficiency and ease of implementation, reaffirming its popularity for rapid deployment. ABC offers 

a balanced profile with moderate performance across all dimensions but lags slightly in precision and efficiency (Figure 5). 

Overall, the chart highlights the nuanced strengths of each algorithm, emphasising that optimal algorithm selection should be 

guided by specific design priorities—whether precision, feasibility, speed, or computational simplicity. 

 

 
 

Figure 5: Algorithm's convergence 

 

The bar chart compares key performance metrics, average convergence speed, constraint satisfaction, and cost reduction 

efficiency across five swarm intelligence algorithms: PSO, ACO, ABC, GWO, and HHO. HHO achieves the highest 

convergence speed, closely followed by PSO and GWO, indicating their ability to locate near-optimal solutions rapidly. In 

terms of constraint satisfaction, ACO and GWO achieve identical high scores, validating their robustness in handling complex 

design constraints, while PSO and HHO exhibit relatively moderate feasibility. For cost reduction efficiency, PSO performs 

best, closely followed by GWO and HHO, confirming their effectiveness in minimising the fabrication cost of the welded beam. 

ABC, although balanced across metrics, lags behind the top performers, particularly in cost efficiency. Overall, GWO stands 
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out as the most well-rounded algorithm, maintaining consistently high scores across all categories. At the same time, PSO and 

HHO are strong contenders for fast and cost-effective solutions when constraint rigour is moderate (Figure 6). 

 

 
 

Figure 6: Performance cooperation 

7. Practical Implications 

 

The results show that SI algorithms, particularly HHO and GWO, can effectively be employed for structural design problems. 

These methods offer advantages in terms of solution quality, flexibility in constraint handling, and robust convergence, making 

them suitable for integration into engineering design tools and CAD systems. Their black-box nature also enables application 

across diverse design formulations without the need for explicit derivative calculations. 

 

8. Conclusion and Future Work 

 

This study conducted a comprehensive evaluation of five prominent swarm intelligence algorithms—PSO, ACO, ABC, GWO, 

and HHO—on the classical welded beam design problem, a well-known benchmark in structural engineering optimisation. 

Using a standardised experimental framework and consistent metrics, we assessed each algorithm’s ability in cost minimisation, 

constraint handling, convergence speed, and robustness. Results showed that HHO and GWO outperformed the others in terms 

of convergence and constraint satisfaction. GWO offered balanced performance, while HHO demonstrated exceptional 

exploitation capabilities in complex, high-dimensional spaces. PSO confirmed its reputation for cost-effective design and rapid 

convergence, although it was moderately effective in handling constraints. ACO achieved excellent feasibility performance but 

converged more slowly, making it preferable when constraint satisfaction is critical. ABC exhibited diverse solutions, suitable 

for multimodal landscapes, though its cost efficiency was slightly lower. Importantly, the analysis confirms that no single 

algorithm is universally superior. Algorithm selection should align with specific design goals, such as feasibility, speed, or 

economic performance. For high-precision, safety-critical tasks, GWO is recommended; for fast, cost-driven applications, HHO 

or PSO are more suitable. 

 

Beyond performance evaluation, this work highlights the broad applicability of swarm intelligence in structural design. The 

derivative-free nature, scalability, and robustness of SI algorithms make them ideal for tackling nonlinear, constrained, and 

real-world engineering problems. Future work will focus on multi-objective optimisation, hybrid algorithm frameworks, and 

adaptive parameter control. The integration of uncertainty modelling and surrogate-assisted simulations also holds promise for 

reducing computational expense and enhancing solution quality in large-scale structural applications. 
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